Patent Number: 7,824,920

Title: Method of mass spectrometric analysis from closely packed microspots by their simultaneous laser irradiation

Abstract: This application relates to a process for controllably placing two or more microspots on a target substrate in close proximity to one another. The microspots may then be simultaneously irradiated and the resulting ions detected by mass spectrometry, such as time of flight mass spectrometry. In one embodiment the size and spacing of the microspots on the substrate may be controlled by using an electrodynamic balance during the deposition step. The deposition procedure ensures that at least some of the microspots are spaced-apart on the substrate a distance less than the focused output of a single laser. Simultaneous irradiation of the adjacent microspots may cause desorption plumes of the microspots to interact in a gas phase, such as by ion-molecule reactions. The microspots may be configured to improve the ionization yield of the sample material in the gas phase and/or to increase the frequency of ion-molecule collisions in the gas phase. This allows for desorption of particular classes of compounds to be optimized independently of ionization. Different microspots could include different amounts or types of matrix compounds to enable simultaneously detection of compounds of varied physical and chemical properties within the same sample. One or more of the microspots may include calibrants or other additives for improving detecting accuracy or quantitation. Organized array of closely packed microspots may be created for use as standard reference materials or analyte detectors.

Inventors: Agnes; George R. (Coquitlam, CA), Bogan; Michael J. (Burnaby, CA)

Assignee: Simon Fraser University

International Classification: G01N 24/00 (20060101)

Expiration Date: 2019-11-02 0:00:00